Signed Graph Metric Learning via Gershgorin Disc Perfect Alignment
نویسندگان
چکیده
منابع مشابه
Image alignment via kernelized feature learning
Machine learning is an application of artificial intelligence that is able to automatically learn and improve from experience without being explicitly programmed. The primary assumption for most of the machine learning algorithms is that the training set (source domain) and the test set (target domain) follow from the same probability distribution. However, in most of the real-world application...
متن کاملActive Manifold Learning via Gershgorin Circle Guided Sample Selection
In this paper, we propose an interpretation of active learning from a pure algebraic view and combine it with semi-supervised manifold learning. The proposed active manifold learning algorithm aims to learn the lowdimensional parameter space of the manifold with high accuracy from smartly labeled samples. We demonstrate that this problem is equivalent to a condition number minimization problem ...
متن کاملGraph Augmentation via Metric Embedding
Kleinberg [17] proposed in 2000 the first random graph model achieving to reproduce small world navigability, i.e. the ability to greedily discover polylogarithmic routes between any pair of nodes in a graph, with only a partial knowledge of distances. Following this seminal work, a major challenge was to extend this model to larger classes of graphs than regular meshes, introducing the concept...
متن کاملMetric Learning for Temporal Sequence Alignment
In this paper, we propose to learn a Mahalanobis distance to perform alignment of multivariate time series. The learning examples for this task are time series for which the true alignment is known. We cast the alignment problem as a structured prediction task, and propose realistic losses between alignments for which the optimization is tractable. We provide experiments on real data in the aud...
متن کاملLearning Optimal Metric for Image Alignment
Image alignment has been a long standing problem in computer vision. Parameterized Appearance Models (PAMs) such as Lukas-Kanade tracker, Eigentracking, and Active Appearance Models are commonly used for modelling and aligning images. While PAMs have numerous advantages relative to alternate approaches, they have at least two drawbacks. First, they are especially prone to local minima in the re...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Pattern Analysis and Machine Intelligence
سال: 2021
ISSN: 0162-8828,2160-9292,1939-3539
DOI: 10.1109/tpami.2021.3091682